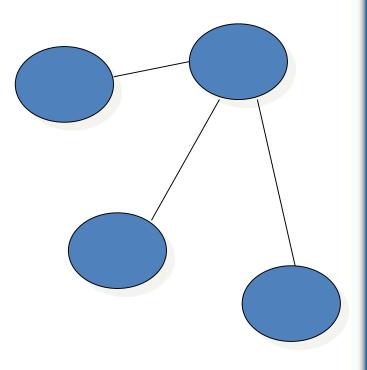
Графы. Сети. Деревья.



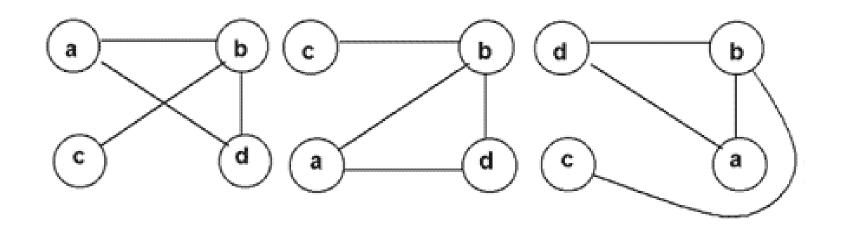
Содержание:

- Графы: определения и примеры
- Путь в графе
- Решение логических задач
- Ориентированные графы
- Путь в орграфе
- Деревья
- Матрица смежности

Графы: определения и примеры

• Говоря простым языком, граф - это множество точек (для удобства изображения - на плоскости) и попарно соединяющих их линий (не обязательно прямых). В графе важен только факт наличия связи между двумя вершинами. От способа изображения этой связи структура графа не зависит.

Например, три *графа* на рис. 1 совпадают



А два *графа* на рис. 2 - различны

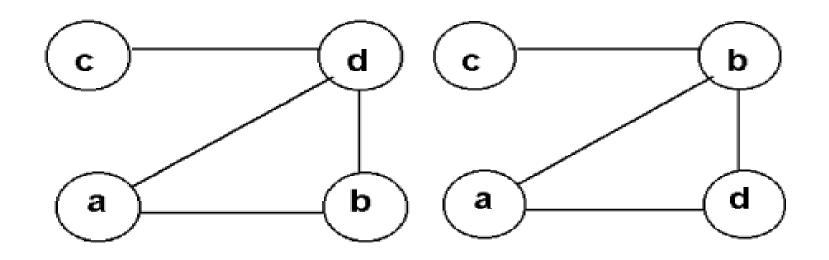


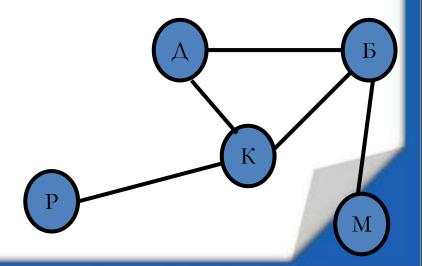
Рис. 2. Пример двух разных графов

Граф – это графическое изображение состава и структуры системы.

Граф состоит из вершин и линий связи.

Граф, содержащий симметричные (не направленные) связи-

ребра, называется неориентированным графом (сетью).



Степень вершины (deg)

- Любому ребру соответствует ровно две вершины, а вот вершине может соответствовать произвольное количество ребер, это количество и определяет степень вершины. Изолированная вершина вообще не имеет ребер (ее степень равна 0).
- Граф называется *нуль графом,* если он состоит из изолированных вершин.
- Вершина графа называется висячей, если степень ее 1.

• **Теорема 1**. В графе G(V,X) сумма степеней всех его вершин — число четное, равное удвоенному числу ребер графа.

Пример. Пусть граф содержит 5 ребер, тогда степень этого графа равна $r=5\cdot 2=10$

- Вершина называется *четной*, если ее степень есть четное число и *нечетной*, если степень ее есть нечетное число.
- **Теорема 2.** Число нечетных вершин любого графа четно.

Следствие. Невозможно начертить граф с нечетным числом нечетных вершин.

Полный граф

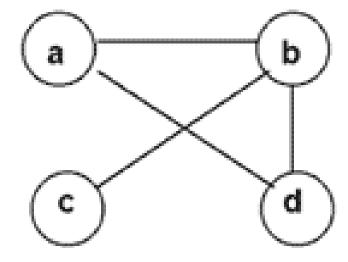
- Граф G называется полным, если любые две его различные вершины соединены одним и только одним ребром.
- Полный граф определяется только своими вершинами.
- Степень любой вершины полного графа, очевидно, равна k= п – 1, где п – число его вершин. Число ребер этого графа равно числу сочетаний из п по 2
- Дополнением графа G(V, X) называется граф G'(V, X'), которой состоит из вершин первого графа и ребер, которые дополняют первый граф до полного графа.

Смежные вершины и рёбра

- Две *вершины* называются **смежными**, если они являются разными концами одного *ребра*.
- Два *ребра* называются **смежными**, если они выходят из одной *вершины*.

Путь в графе

• Путь в графе - это последовательность вершин (без повторений), в которой любые две соседние вершины смежны. Например, в изображенном графе, есть два различных пути из вершины а в вершину с: adbc и abc.



Достижимость

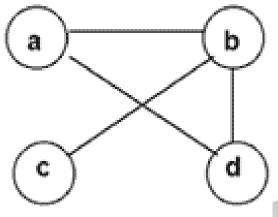
- Вершина v достижима из вершины u, если существует путь, начинающийся в u и заканчивающийся в v.
- Граф называется **связным**, если все его вершины взаимно достижимы.

Длина пути

Длина пути - количество ребер, из которых этот *путь* состоит. Например, длина уже упомянутых *путей* adbc и abc - 3 и 2 соответственно.

Расстояние между между вершинами и и v - это длина кратчайшего пути от и до v. Из этого определения видно, что расстояние между вершинами а и с в графе на рис. равно 2.

• **Цикл** - это замкнутый *путь*. Все *вершины* в *цикле*, кроме первой и последней, должны быть различны. Например, *циклом* является *путь* abda в *графе* на рис.



Примеры неориентированных графов

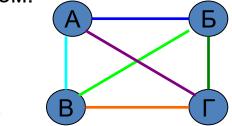
	Граф	Вершины	Ребра
	Семья	Люди	Родственные связи
	Город	Перекрестки	Улицы
	Сеть	Компьютеры	Кабели
	Домино	Костяшки	Возможность
	Дом	Квартиры	Соседство
	Лабиринт	Развилки и тупики	Переходы
)	Метро	Станции	Пересадки
	Листок в клеточку	Клеточки	Наличие общей границы

Метод графов - один из способов решения логических задач.

По условию задачи составляется схема, состоящая из линий (ребер) и точек (вершин).

Пример 1. Айдар, Борис, Владимир и Григорий играли в шахматы. Каждый сыграл с қаждым по одной партии. Сқольқо партий было сыграно?

Для решения задачи составим граф с 4 вершинами А, Б, В, Г, обозначенными первыми буквами имен участников игры в шахматы. Тогда количество рёбер этого графа дает ответ. Для наглядности каждое ребро выделено разным цветом.



ОТВЕТ: Было сыграно 6 партий.

Используя метод графов, решите задачу самостоятельно.

Пять приятелей при встрече пожали друг другу руки. Сколько всего было сделано рукопожатий?

1

5 • 3

Прием моделирования с помощью графов

Ситуации, в қоторых требуется найти соответствие между элементами различных множеств, можно моделировать с помощью графов. В этом случае элементы различных множеств будем обозначать точками, а соответствия между ними — отрезками. Пунктирные линии будут обозначать отсутствие соотношений, указанных в задаче.

Пример 2.

*П*Гри товарища – Иван, *Омитрий и Степан преподают* различные предметы (химию, биологию и физику)

в шқолах Мосқвы ТТулы и Новгорода.

О них известно следующее:

- 1. Иван работает не в Москве, а Дмитрий не в Новгороде.
- 2. Москвич преподает физику.
- 3. Пот, кто работает в Новгороде, преподает химию.
- 4. Дмитрий и Степан преподают не биологию.

Кақой предмет и в қақом городе преподает қаждый?

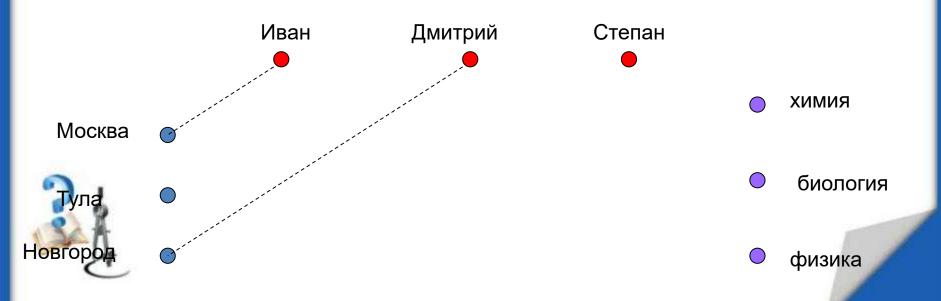
В задаче можно выделить три множества: учебных предметов, городов, учителей. Каждое множество содержит по три элемента. Обозначим их вершинами графа (точками).

	Иван	Дмитрий —	Степан		
Москва					РИМИХ
Тула					биология
Новгород				•	физика

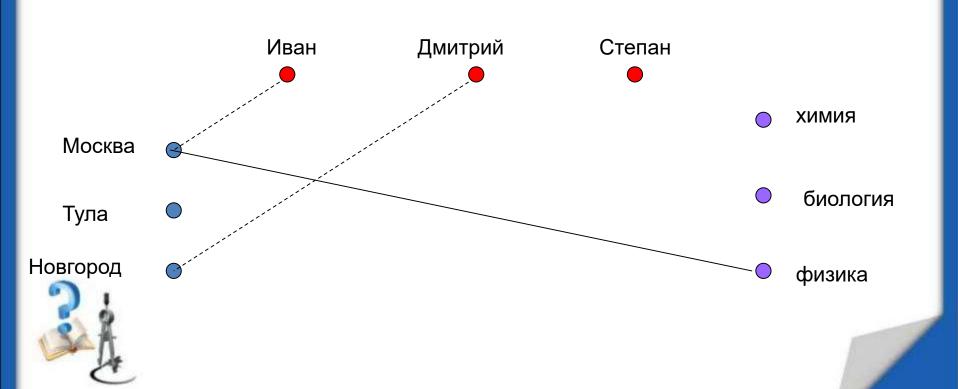
То условию задачи будем соединять точки отрезками (сплошными линиями), если имеет место соответствие между данными элементами, или пунктирными линиями, если соответствия нет.

Шақим образом, рёбра нашего графа будут либо сплошные, либо пунқтирные.

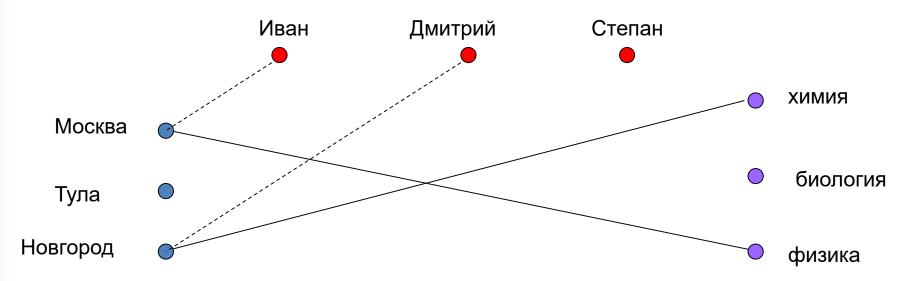
Построим рёбра, используя условие: Иван работает не в Москве, а Дмитрий не в Новгороде.



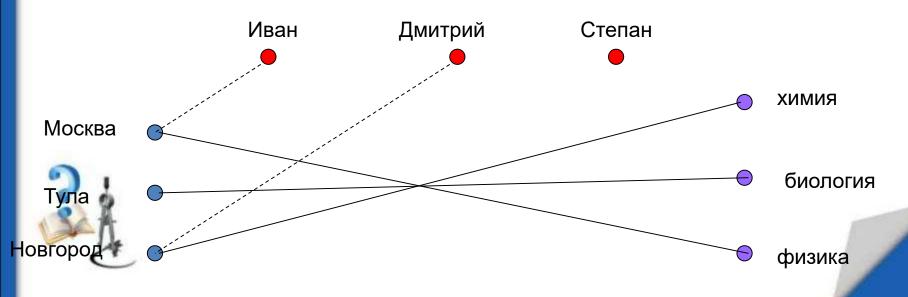
Москвич преподает физику.



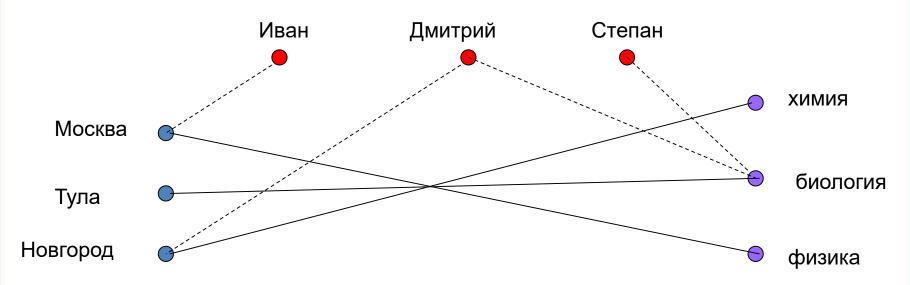
Тот, кто работает в Новгороде, преподает химию.



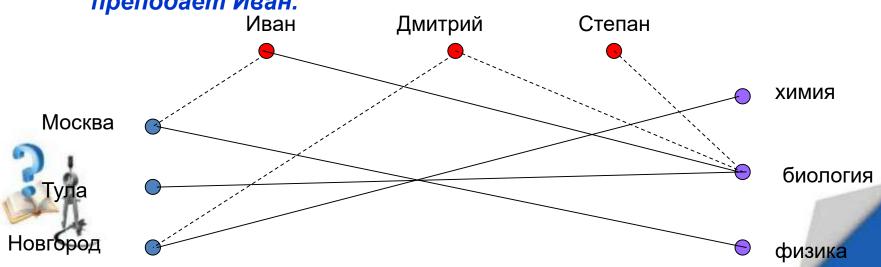
Анализируя полученные связи, делаем вывод: житель Тулы преподает биологию.



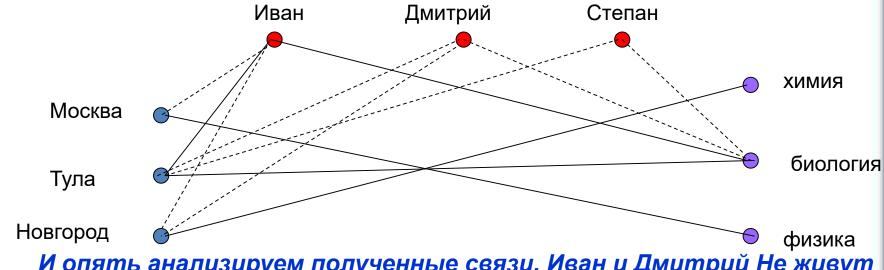
Дмитрий и Степан преподают не биологию. Добавляем два пунктирных ребра.



Анализируя полученные связи, делаем вывод: биологию преподает Иван.

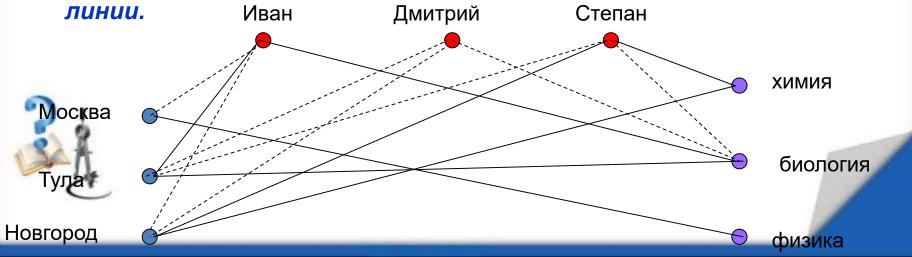


Снова смотрим на граф и анализируем связи. Иван не живет в Москве, Иван преподает биологию. В Новгороде живет преподаватель химии, значит Иван не живет В Новгороде. Вывод: Иван живет в Туле. А Дмитрий и Степан в Туле не живут.

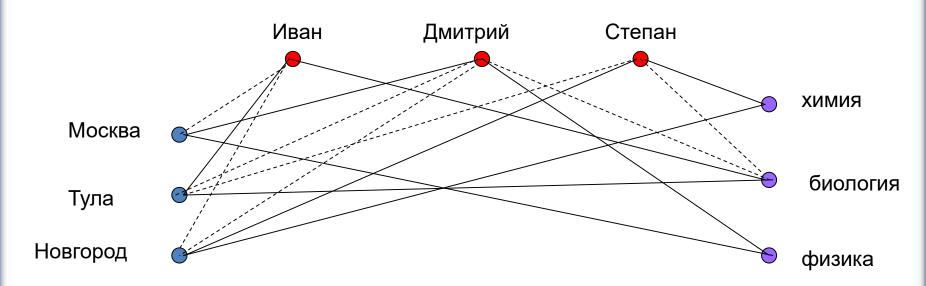


И опять анализируем полученные связи. Иван и Дмитрий Не живут в Новгороде. Следовательно, в Новгороде живет Степан. А тот, кто живет В Новгороде, преподает химию. Делаем ещё 2 сплошных линии.

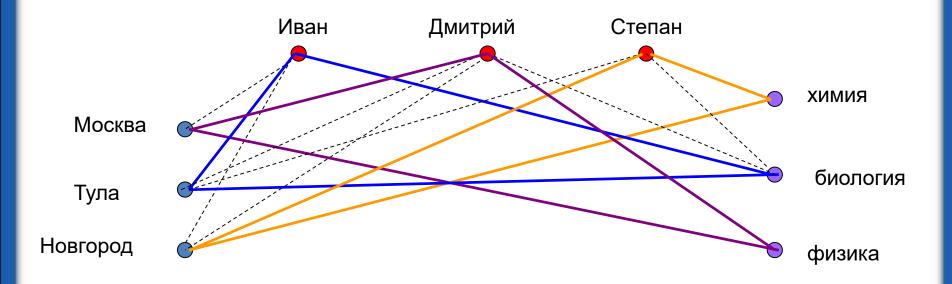
Иван Дмитрий Степан



Анализируем рёбра графа. Иван живёт в Туле. Степан живёт в Новгороде. Следовательно, в Москве живёт Дмитрий. Химию преподает Степан. Биологию преподает Иван. Следовательно, физику преподает Дмитрий. Проводим ещё 2 сплошных линии.



На графе имеем три треугольника, вершины которого соединены сплошными линиями. Вершины этих треугольников дают ответ задачи.



Получаем ответ (двигаясь по вершинам графа, образующим сплошные треугольники): Иван живёт в Туле и преподает биологию. Омитрий живёт в Москве и преподает физику. Степан живёт в Новгороде и преподает химию.

Используя метод графов, решите задачу самостоятельно.

Однажды на отдыхе за қруглым столом оқазались пятеро ребят родом из Москвы, Санқт-Петербурга, Новгорода, Перми и Помска:

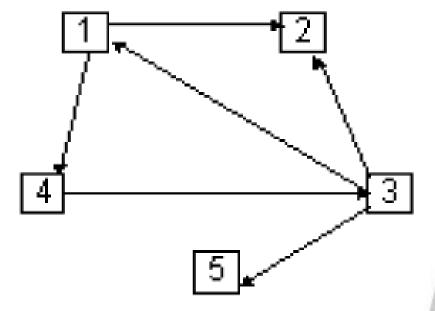
Юра, Поля, Алеша, Коля и Витя. Москвич сидел между томичом и Витей, санкт-петербуржец - между Юрой и Полей, а напротив него сидели пермяки Алеша. Коля никогда не был в Санкт-Петербурге, а Юра не бывал в Москве и Помске, а томич с Полей регулярно переписываются. Определите, в каком городе живет каждый из ребят.

Ответ: *Поля живет в Москве, Витя - в Санкт-Петербурге, Юра* в Новгороде, Коля - в Перми, а Алеша - в Помске.

Ориентированные графы

• *Орграф* - это *граф*, все *ребра* которого имеют направление. Такие направленные *ребра* называются *дугами*. На рисунках *дуги* изображаются стрелочками (

рис.3)



Смешанный граф

• В отличие от ребер, дуги соединяют две неравноправные вершины: одна из них называется началом дуги (дуга из нее исходит), вторая - концом дуги (дуга в нее входит). Можно сказать, что любое ребро - это пара дуг, направленных навстречу друг другу.

• Если в *графе* присутствуют и *ребра,* и *дуги,* то его называют *смешанным*

Путь в орграфе

Путь в орграфе - это последовательность вершин (без повторений), в которой любые две соседние вершины смежны, причем каждая вершина является одновременно концом одной дуги и началом следующей дуги.

Например, в *орграфе* на рис. 3 нет *пути*, ведущего из *вершины* 2 в *вершину* 5.

"Двигаться" по *орграфу* можно только в направлениях, заданных стрелками.

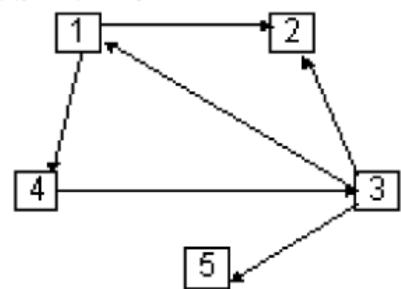


Рис. 3. Орграф

Примеры ориентированных графов

Орграф	Вершины	Дуги
Чайнворд	Слова	Совпадение последней и первой букв (возможность связать два слова в цепочку)
Стройка	Работы	Необходимое предшествование (например, стены нужно построить раньше, чем крышу, т. п.)
Обучение	Курсы	Необходимое предшествование (например, курс по языку Pascal полезно изучить прежде, чем курс по Delphi, и т.п.)
Одевание ребенка	Предметы гардероба	Необходимое предшествование (например, носки должны быть надеты раньше, чем ботинки, и т.п.)
Европейский	Перекресток	Узкие улицы с односторонним движением

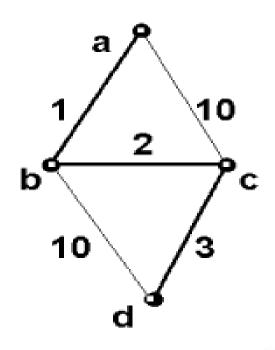
город

Задание

- А)Нарисуйте граф системы «Компьютер», содержащий следующие вершины: процессор, оперативная память, внешняя память, клавиатура, дисплей, принтер. Соедините их направленными линиями(стрелками), обозначающими отношение «передает информацию».
- Б)К предыдущему графу добавьте пунктирные направленные линии, обозначающие отношение «управляет» (работой всех устройств управляет процессор).

Взвешенные графы

• Взвешенный (другое название: размеченный) граф (или орграф) - это граф (орграф), некоторым элементам которого (вершинам, ребрам или дугам) сопоставлены числа. Наиболее часто встречаются графы с помеченными ребрами. Числа-пометки носят различные названия: вес, длина, стоимость.



Длина пути во взвешенном графе

• Длина пути во взвешенном (связном) графе - это сумма длин (весов) тех ребер, из которых состоит путь. Расстояние между вершинами - это, как и прежде, длина кратчайшего пути. Например, расстояние от вершины а до вершины d во взвешенном графе, изображенном на рис. 4, равно 6.

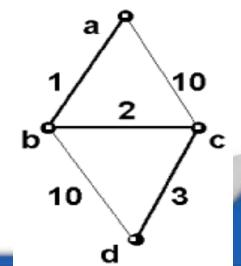


Рис. 4 Взвешенный граф

Примеры взвешенных графов

	Граф	Вершины	Вес вершины	Ребра (дуги)	Вес ребра (дуги)
	Таможни	Государства	Площадь территории	Наличие наземной границы	Стоимость получения визы
	Переезды	Города	Стоимость ночевки в гостинице	Дороги	Длина дороги
	Супер- чайнворд	Слова	-	Совпадение конца и начала слов(возможность "сцепить" слова)	Длина пересекающихся частей
3	Карта	Государства	Цвет на карте	Наличие общей границы	-
	Сеть	Компьютеры	-	Сетевой кабель	Стоимость кабеля

Способы представления графов

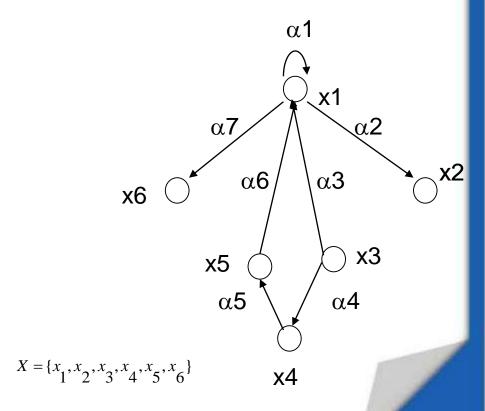
• Существует довольно большое число разнообразных способов представления графов. Однако мы изложим здесь только самые полезные с точки зрения программирования.

Способы представления графов

• Графически

Граф, представленный на рис., состоит из множества вершин и множество дуг

$$\alpha = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7\}$$



Способы представления графов

• Перечислением

$$\{ \langle x_1, x_1 \rangle, \langle x_1, x_2 \rangle, \langle x_1, x_6 \rangle, \langle x_3, x_1 \rangle, \langle x_3, x_4 \rangle, \langle x_4, x_5 \rangle, \langle x_5, x_1 \rangle \}$$

Множеством образов

$$\Gamma_{x_{1}} = \{x_{1}, x_{2}, x_{6}\}$$

$$\Gamma_{x_{2}} = \emptyset$$

$$\Gamma_{x_{3}} = \{x_{1}, x_{4}\}$$

$$\Gamma_{x_{3}} = \{x_{5}\}$$

$$\Gamma_{x_{4}} = \{x_{5}\}$$

$$\Gamma_{x_{5}} = \{x_{1}\}$$

$$\Gamma_{x_{5}} = \emptyset$$

где ${}^{\Gamma}x_{i}$ - образ вершины

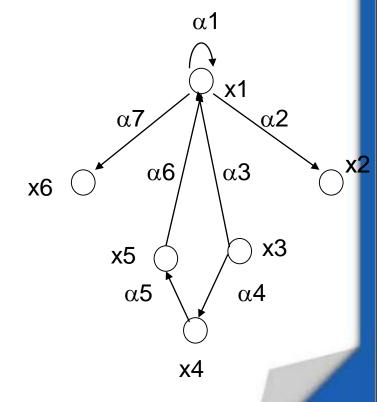
i множество вершин, в которые исходят дуги из данной вершины.

- *Матрица инцидентности -* это матрица вершин и инцидентных им дуг.
- Дуга **инцидентна** вершине, если эта дуга исходит или заходит в данную вершину.
- Вершина *инцидентна* дуге, если в эту вершину заходит или исходит данная дуга.
- В матрице инцидентности в первом столбце расположены вершины, в первой строке дуги. Остальные ячейки матрицы инцидентности заполняются по следующему правилу:
 - γ_{ij} = $^{-1}$ если из i-той вершины исходит j-тая дуга:
 - $-\gamma_{ij}^{\circ}=+1$ если в і-той вершину заходит ј-тая дуга;
 - γ_{ij} $^{=}$ 0 , если i-тая вершина не инцидента j-той дуге;
 - $-\gamma_{ij}^{-}=2$, если из і-той вершины исходит ј-тая дуга и в нее же заходит, т.е. в і-той вершине ј-тая дуга образует **петлю.**

Способы представления графов Матрица инцидентности для ориентированного графа

• Для графа, представленного на рис. матрица инцидентности имеет вид:

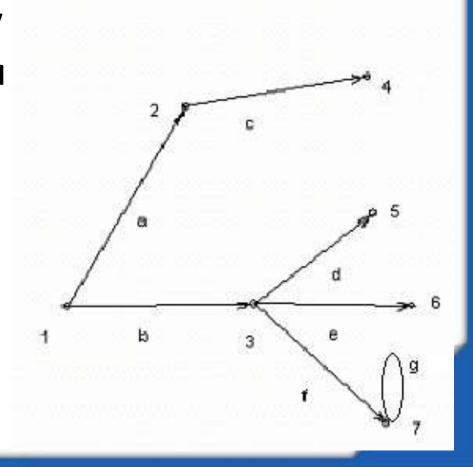
	α_{1}	α_2	α_3	α_4	α_{5}	α_{6}	α_{7}
<i>x</i> ₁	2	-1	+1	0	0	+1	-1
<i>x</i> ₂	0	+1	0	0	0	0	0
<i>x</i> ₃	0	0	-1	-1	0	0	0
<i>x</i> ₄	0	0	0	+1	-1	0	0
<i>x</i> ₅	0	0	0	0	+1	-1	0
<i>x</i> ₆	0	0	0	0	0	0	+1



- На практике в матрице инцидентности иногда нули не проставляются для наглядности.
- Свойство матрицы инцидентности сумма элементов по столбцам равна 0 или 2.

Пример:

Построить матрицу инцидентности для графа, изображённого на рисунке



Пример:

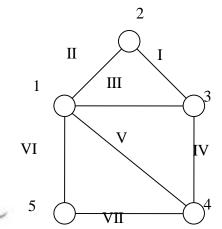
Построить матрицу инцидентности для графа, изображённого на рисунке (ответ)

	1	2	3	4	5	6	7
a	-1	1	0	0	0	0	0
b	-1	0	1	0	0	0	0
С	0	-1	0	1	0	0	0
d	0	0	-1	0	1	0	0
e	0	0	-1	0	0	1	0
f	0	0	-1	0	0	0	1
g	0	0	0	0	0	0	2

- Матрица **инепридентирования** го графа неориентированного графа составляется по правилу:
 - , если і-тая вершина инцидентна ј-тому ребру;
 - , если і-тая вершина не инцидента ј-тому ребру;
 - , если в і-той вершине ј-тое ребро образует петлю.

Способы представления графов Матрица инцидентности для неориентированного графа

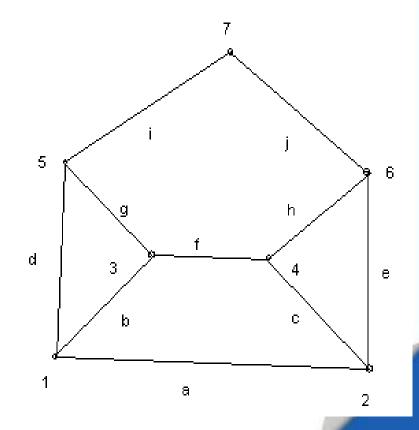
 Для графа, представленного на рис., матрица инцидентности имеет вид:



	I	II	III	IV	V	VI	VII
1		1	1		1	1	
2	1	1					
3	1		1	1			
4				1	1		1
5						1	1

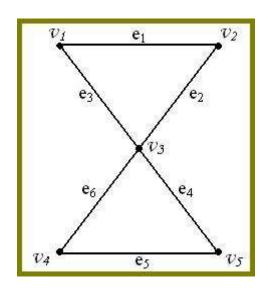
• Пример:

Построить матрицу инцидентности для графа, изображённого на рисунке



• Пример:

Построить матрицу инцидентности для графа, изображённого на рисунке



Решение

	$\boldsymbol{e}_{\!\scriptscriptstyle 1}$	\boldsymbol{e}_2	\boldsymbol{e}_3	\boldsymbol{e}_4	e 5	e_6
$v_{_1}$	1	0	1	0	0	0
v_2	1	1	0	0	0	0
$\mathbf{v}_{_3}$	0	1	1	1	0	1
v_4	0	0	0	1	1	0
v_5	0	0	0	0	1	1

Пример:

Построить матрицу инцидентности для графа, изображённого на рисунке (ответ)

	1	2	3	4	5	6	7
a	1	1	0	0	0	0	0
b	1	0	1	0	0	0	0
С	0	1	0	1	0	0	0
d	1	0	0	0	1	0	0
e	0	1	0	0	0	1	0
f	0	0	1	1	0	0	0
g	0	0	1	0	1	0	0
h	0	0	0	1	0	1	0
i	0	0	0	0	1	0	1
j	0	0	0	0	0	1	1

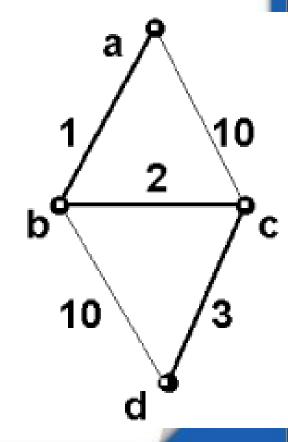
Способы представления графов Матрица смежности для взвешенного графа

 Матрица смежности Sm - это квадратная матрица размером N x N (N количество вершин в графе), заполненная по следующему правилу:

Если в графе имеется ребро e,
 соединяющее вершины u и v, то Sm[u,v]
 = Ves(e), в противном случае Sm[u,v] = "-

Пример матрицы смежности для взвешенного графа

	a	b	C	d
а	0	1	10	-
b	1	0	2	10
C	10	2	0	3
d	-	10	3	0

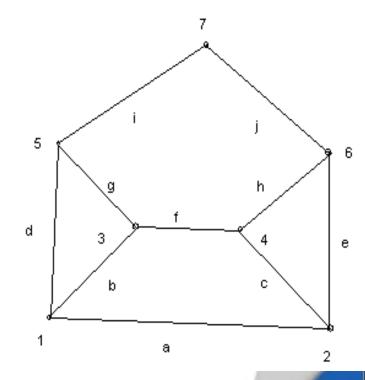


Способы представления графов Матрица смежности

- Для неориентированного графа эта матрица определяется следующим образом.
- Если вершины \mathbf{w}_{j} являются смежными, $\mathbf{\mathcal{E}}_{ij}$ Т $\mathbf{Q}\,\mathbf{1}$.
- В противном случа $\mathbf{e}_{ij} = 0$
- Матрица смежности неориентированного графа обязательно симметрична. Размерность матрицы указывает на количество вершин, а число рёбер равно половине единиц, имеющихся в матрице.

Способы представления графов Пример матрицы смежности для неориентированного графа

	1	2	3	4	5	6	7
1	0	1	1	0	1	0	0
2	1	0	0	1	0	1	0
3	1	0	0	1	1	0	0
4	0	1	1	0	0	1	0
5	1	0	1	0	0	0	1
6	0	1	0	1	0	0	1
7	0	0	0	0	1	1	0



Преимущества матрицы смежности

• Удобство матрицы смежности состоит в наглядности и прозрачности алгоритмов, основанных на ее использовании. А неудобство - в несколько завышенном требовании к памяти: если граф далек от полного, то в массиве, хранящем матрицу смежности, оказывается много "пустых мест" (нулей). Кроме того, для "общения" с пользователем этот способ представления графов не слишком удобен: его лучше применять только для внутреннего представления данных.

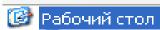
Граф иерархической системы называется деревом.

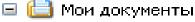
Иерархическими называются системы, между элементами которых установлены отношения подчинения или вхождения друг в друга.

Дерево не имеет циклов и петель; между любыми двумя вершинами существует единственный путь.

Выделенная в дереве вершина, которая не имеет исходных вершин, называется корнем. От корня начинается отсчет уровней дерева.

Папки





- 표 🧰 база данных
- 🖼 🧀 ИНТЕЛ
- 🗷 倡 Мои рисунки
 - 🛗 Моя музыка
- 🖭 🧀 РБД
- 표 🚞 Терехина Е.В
- 🖃 💈 Мой компьютер
 - 🖽 选 Диск 3,5 (А:).
 - 🖪 🥯 Локальный диск (С:)
 - 🖪 📂 Локальный диск (D:).
 - 🖪 🎱 DVD-RAM дисковод (E:).
 - 🖪 🕯 KINGSTON (F:)
 - 🖃 👺 Панель управления
 - 🦏 Администрирование
 - Назначенные задания
 - Принтеры и факсы
 - 🔕 Сетевые подключения
 - 过 Шрифты
 - 🗷 🊱 Nero Scout
 - 표 🧀 Общие документы
 - 🖪 🧰 Документы Школа
- 🖪 🧐 Сетевое окружение
 - 🥑 Корзина
- 🖪 🧰 Clipart
 - 🧀 Задания для 5 класса
- 🗷 🧀 игра
- 🗷 🚞 учителя

Примерами иерархической системы в информатике является файловая система диска.

Гамильтоновы графы

- Граф называется *гамильтоновым*, если для каждой вершины графа найдется маршрут начинающейся и заканчивающей в этой вершине и проходящий через все вершины только один раз. Такой маршрут называется *гамильтоновым циклом*.
- Гамильтоновы графы применяются для моделирования многих практических задач, например, служат моделью при составлении расписания движения поездов.
- Основой всех таких задач служит классическая задача коммивояжера: коммивояжер должен совершить поездку по городам и вернуться обратно, побывав в каждом городе ровно один раз, сведя при этом затраты на передвижения к минимуму.

Гамильтонов граф

Гамильтоновым циклом в н-графе называется простой цикл, обходящий все вершины графа (ровно по одному разу).

Гамильтонов граф – граф, в котором есть гамильтонов цепь.

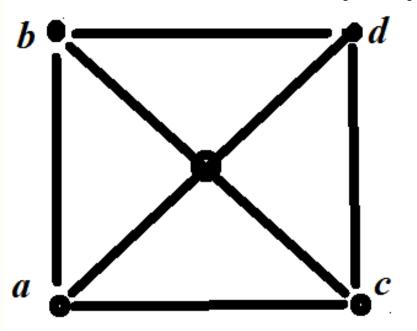
Полугамильтонов граф

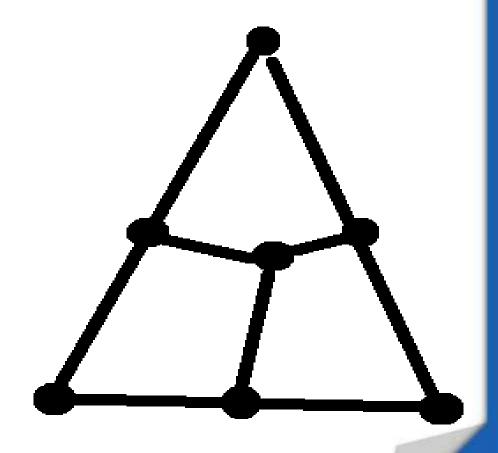
Гамильтоновой цепью в н-графе называется простая цепь, обходящий все вершины графа (ровно по одному разу).

Полугамильтонов граф – граф, в котором есть гамильтонова цикл.

Гамильтонов, полугамильтонов графы

Гамильтонов граф





Полгамильтонов граф

Дерево – граф иерархической структуры. Между любыми двумя его вершинами существует единственный путь. Дерево не содержит циклов и петель.

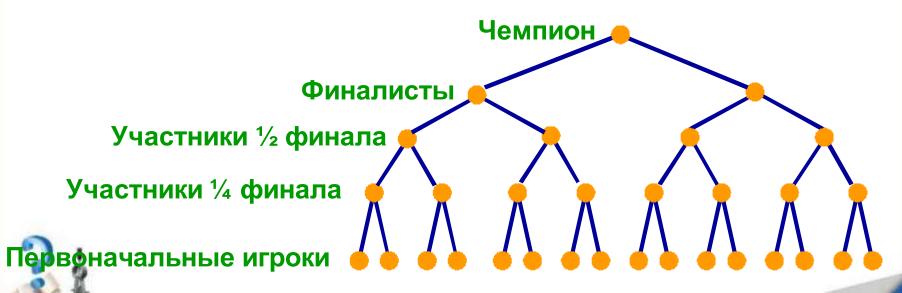
Корень – главная вершина дерева.

Предок – объект верхнего уровня.

Потомок – объект нижнего уровня.

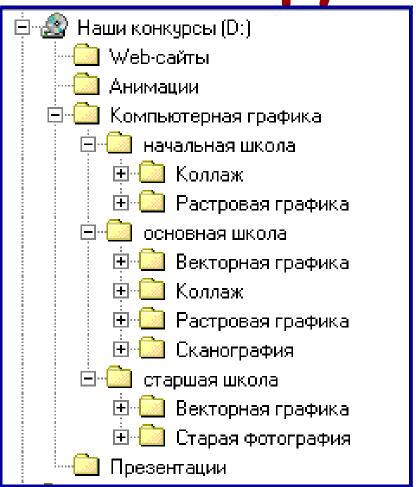
Листья – вершины, не имеющие потомков.

Укажите перечисленные объекты у дерева



Олимпийская система спортивных соревнований

Файловая структура



Укажите корневую вершину, объекты 1-го, 2-го и 3-го уровней